Papers
Topics
Authors
Recent
2000 character limit reached

Convolutional Persistence Transforms (2208.02107v2)

Published 3 Aug 2022 in math.AT and cs.LG

Abstract: In this paper, we consider topological featurizations of data defined over simplicial complexes, like images and labeled graphs, obtained by convolving this data with various filters before computing persistence. Viewing a convolution filter as a local motif, the persistence diagram of the resulting convolution describes the way the motif is distributed across the simplicial complex. This pipeline, which we call convolutional persistence, extends the capacity of topology to observe patterns in such data. Moreover, we prove that (generically speaking) for any two labeled complexes one can find some filter for which they produce different persistence diagrams, so that the collection of all possible convolutional persistence diagrams is an injective invariant. This is proven by showing convolutional persistence to be a special case of another topological invariant, the Persistent Homology Transform. Other advantages of convolutional persistence are improved stability, greater flexibility for data-dependent vectorizations, and reduced computational complexity for certain data types. Additionally, we have a suite of experiments showing that convolutions greatly improve the predictive power of persistence on a host of classification tasks, even if one uses random filters and vectorizes the resulting diagrams by recording only their total persistences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Adams H, Emerson T, Kirby M, et al (2017) Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research 18 Alpaydin and Kaynak (1998) Alpaydin E, Kaynak C (1998) Optical recognition of handwritten digits data set. UCI Machine Learning Repository Aukerman et al (2020) Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Alpaydin E, Kaynak C (1998) Optical recognition of handwritten digits data set. UCI Machine Learning Repository Aukerman et al (2020) Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  2. Alpaydin E, Kaynak C (1998) Optical recognition of handwritten digits data set. UCI Machine Learning Repository Aukerman et al (2020) Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  3. Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) Belton et al (2018) Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  4. Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from persistence diagrams. arXiv preprint arXiv:180510716 Belton et al (2020) Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  5. Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs from persistence diagrams. Computational Geometry 90:101,658 Bendich et al (2020) Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  6. Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of persistent homology computations. Journal of Applied and Computational Topology 4(2):309–338 Bestvina and Brady (1997) Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  7. Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3):445–470 Bleile et al (2021) Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  8. Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital image constructions. arXiv preprint arXiv:210211397 Botnan and Lesnick (2022) Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  9. Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence. arXiv preprint arXiv:220314289 Bubenik and Wagner (2020) Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  10. Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert spaces. Journal of Applied and Computational Topology 4(3):339–351 Bubenik et al (2015) Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  11. Bubenik P, et al (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102 Buchet et al (2014) Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  12. Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields with outliers. arXiv preprint arXiv:14121680 Calcina and Gameiro (2021) Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  13. Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Mathematics and Computers in Simulation 185:719–732 Carlsson (2009) Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  14. Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society 46(2):255–308 Carlsson et al (2008) Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  15. Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of spaces of natural images. International journal of computer vision 76(1):1–12 Carrière et al (2015) Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  16. Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In: Computer graphics forum, Wiley Online Library, pp 1–12 Carriere et al (2021) Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  17. Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology based functions. In: International conference on machine learning, PMLR, pp 1294–1303 Chung and Day (2018) Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  18. Chung YM, Day S (2018) Topological fidelity and image thresholding: A persistent homology approach. Journal of Mathematical Imaging and Vision 60(7):1167–1179 Chung et al (2022) Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  19. Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework for mathematical morphology. Scientific reports 12(1):1–25 Cohen-Steiner et al (2007) Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  20. Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete & computational geometry 37(1):103–120 Crawford et al (2020) Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  21. Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association 115(531):1139–1150 Cuerno and Barabási (1995) Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  22. Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces. Physical review letters 74(23):4746 Curry (2018) Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  23. Curry J (2018) The fiber of the persistence map for functions on the interval. Journal of Applied and Computational Topology 2(3):301–321 Curry et al (2018) Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  24. Curry J, Mukherjee S, Turner K (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv:180509782 Deng (2012) Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  25. Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine 29(6):141–142 Di Fabio and Ferri (2015) Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  26. Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, Springer, pp 294–305 Edelsbrunner and Harer (2010) Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  27. Edelsbrunner H, Harer J (2010) Computational topology: an introduction Fasy et al (2019) Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  28. Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5 Gabrielsson et al (2020) Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  29. Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 1553–1563 Gameiro et al (2016) Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  30. Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132 Ghrist (2008) Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  31. Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 45(1):61–75 Ghrist et al (2018) Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  32. Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral transforms. Journal of Applied and Computational Topology 2(1):55–60 Giunti et al (2021) Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  33. Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction for clique filtrations. arXiv preprint arXiv:211102125 Golovin and Davis (1998) Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  34. Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena 116(3-4):363–391 Hewitt and Ross (2012) Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  35. Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol 115. Springer Science & Business Media Hiraoka et al (2016) Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  36. Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences 113(26):7035–7040 Hu et al (2019) Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  37. Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems 32 Jiang et al (2020) Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  38. Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 844–845 Kaczynski et al (2004) Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  39. Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology, vol 3. Springer Khramtsova et al (2022) Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  40. Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent homology for visual recognition. arXiv e-prints pp arXiv–2207 Kim et al (2020) Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  41. Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on persistent landscapes. Advances in Neural Information Processing Systems 33:15,965–15,977 Kipf and Welling (2016) Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  42. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907 Lacombe et al (2018) Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  43. Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means and clusters for persistence diagrams using optimal transport. Advances in Neural Information Processing Systems 31 Leygonie and Henselman-Petrusek (2021) Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  44. Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of the fiber of persistent homology on cell complexes. arXiv preprint arXiv:211014676 Leygonie and Tillmann (2022) Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  45. Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial complexes. Journal of Pure and Applied Algebra p 107099 Lindenstrauss (1984) Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  46. Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26(189-206):2 Maria et al (2019) Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  47. Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the distance kernel embedding. arXiv preprint arXiv:191202225 Milosavljević et al (2011) Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  48. Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in matrix multiplication time. In: Proceedings of the twenty-seventh Annual Symposium on Computational Geometry, pp 216–225 Monod et al (2019) Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  49. Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient statistics for persistent homology. SIAM Journal on Applied Algebra and Geometry 3(2):337–371 Motta et al (2012) Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  50. Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. Journal of Physics D: Applied Physics 45(12):122,001 Nazarpour and Chen (2017) Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  51. Nazarpour K, Chen M (2017) Handwritten Chinese Numbers 10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831 Otter et al (2017) Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  52. Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation of persistent homology. EPJ Data Science 6:1–38 Oudot and Solomon (2017) Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  53. Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv preprint arXiv:171203630 Oudot and Solomon (2020) Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  54. Oudot S, Solomon E (2020) Inverse problems in topological persistence. In: Topological Data Analysis. Springer, p 405–433 Oudot (2015) Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  55. Oudot SY (2015) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Society Providence Oudot (2017) Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  56. Oudot SY (2017) Persistence theory: from quiver representations to data analysis, vol 209. American Mathematical Soc. Pham et al (2020) Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  57. Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An analysis of sinkhorn algorithm. In: International Conference on Machine Learning, PMLR, pp 7673–7682 Poulenard et al (2018) Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  58. Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimization for continuous shape matching. In: Computer Graphics Forum, Wiley Online Library, pp 13–25 Russakovsky et al (2015) Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  59. Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115(3):211–252 Skraba and Turner (2020) Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  60. Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams. arXiv preprint arXiv:200616824 Solomon et al (2021a) Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  61. Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse theorems for distributed persistence. arXiv preprint arXiv:210112288 Solomon et al (2022) Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  62. Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology: Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M (eds) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 61:1–61:16, 10.4230/LIPIcs.SoCG.2022.61, URL https://drops.dagstuhl.de/opus/volltexte/2022/16069 Solomon et al (2021b) Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  63. Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 109–117 Suzuki et al (2021) Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  64. Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from image data through persistent homology analysis. Scientific reports 11(1):1–13 Tauzin et al (2021) Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  65. Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res 22(39):1–6 Turner et al (2014) Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  66. Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3(4):310–344 Villain (1991) Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  67. Villain J (1991) Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1):19–42 Villani (2021) Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  68. Villani C (2021) Topics in optimal transportation, vol 58. American Mathematical Soc. Wagner (2021) Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  69. Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2 wasserstein metric. Proceedings of the American Mathematical Society 149(6):2673–2677 Wolf (1991) Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783 Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783
  70. Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters 67(13):1783

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.